朱玉龙

朱玉龙

2021-11-07

Subscription

如何看待 DM i 的刀片电池设计?

  1. 动力电池
1,485

今天看到朋友在分享 DM-I 120 公里的电池版本的信息(之前官方的说法,是覆盖电池电量 8.3~46kWh 的电量梯度),是一图流。

结合我了解的信息来梳理一下这个厚刀片电池的设计想法、构思和发展。从原理来看,本质上厚刀片是一种基于软包磷酸铁锂的创新,从长期来看也未必不是一条路。

图 1 DM-I 厚刀片磷酸铁锂电池系统的设计

DM-i 刀片电池的热管理

在图 1 里面,我们看到了和之前不一样的东西 —— 里面内嵌了加热膜。也就是说,在展示的结构里面,还多了加热膜,并且使用导热凝胶尽可能在加热膜上面降低热阻。

图 2 展示的 DM-i 电池结构

在之前比亚迪宣传的材料中,主要采取两种模式:

1)电池散热:采用冷媒直冷技术,直接将冷媒通入电池包进行冷却,相比液冷减少了一级能量交换,换热效率比液冷提升了 20%。

图 3 DM-i 的冷媒直冷技术

2)电池加热:脉冲自加热技术,通过电池高频充放电,不仅能给电池加热,还能加热得均匀,脉冲自加热效率比液加热提升 10%。

图 4 自加热技术

但实际的情况来看,脉冲自加热带来的速率不确定,还不如在厚刀片电池表面贴上加热膜来得更直接。如前面所述,其实不容易做的,特别是要把这么多颗串联的磷酸铁锂电池均匀地加热起来,光靠自加热高频振荡效果不是那么理想。

DM-i 的设计理念

我的理解,这个厚刀片的设计,是有点盯着丰田打的意思。

这根特别长的厚刀片电芯,其实和丰田把多个小的标准镍氢电池装在狭长的大镍氢电池里面有着异曲同工之妙。多个软包在制作出成品以后,通过两颗绝缘再加隔离的方式,把软包电池放在一起,然后通过长的方壳体进行成组。

备注:在这个里面,壳体可能需要做特殊的绝缘处理,后面有详细的拆解分析我们再来看

图 5 DM-i 的电池设计,多颗软包串联然后整合在一节电芯里面

这样做的最终目标,就是如下图所示,把 PHEV 的成组率达到一个非常高的水平。这是电池系统布置工程师非常喜欢的结构,很简洁美观。

图 6 纵向布置模组

从电池结构来看,确实是不错的设计,当然缺点就是这层套壳子的操作,是在电池模组线(其实类似模组的组装),还有密封等操作,因此这个软包电芯在制造成品率方面存在挑战;特别是加了泡棉和压力以后,一旦有一颗自放电问题电芯,整体电芯的特性就会受到挺大的影响。这种小容量磷酸铁锂普遍会遇到的比较大的制造挑战。

图 7 DM-i 的电连接和冷却都比较简单

小结:我其实挺喜欢这种设计的,总体 Pack 成本来看还是相对较低的,但是厚刀片电池整体的降本空间是否有进一步挖掘的潜力,还有待讨论。

本文著作权归作者所有,并授权 42 号车库独家使用,未经 42 号车库许可,不得转载使用。
Comment · 0
Owner: 0
Sort by like

Upload
大胆发表你的想法~
5
Comment